

NOVA University of Newcastle Research Online

nova.newcastle.edu.au

Avman, Maya Abady; Osmotherly, Peter G.; Snodgrass, Suzanne; Rivett, Darren A.; 'Is there an association between hip range of motion and nonspecific low back pain? A systematic review.' Published in *Musculoskeletal Science and Practice* Vol. 42, p. 38-51 (2019)

Available from: http://dx.doi.org/10.1016/j.msksp.2019.03.002

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Accessed from: http://hdl.handle.net/1959.13/1411723

Accepted Manuscript

Is there an association between hip range of motion and nonspecific low back pain? A systematic review

Maya Abady Avman, Peter G. Osmotherly, Suzanne Snodgrass, Darren A. Rivett

PII: S2468-7812(18)30322-9

DOI: https://doi.org/10.1016/j.msksp.2019.03.002

Reference: MSKSP 1993

- To appear in: Musculoskeletal Science and Practice
- Received Date: 24 August 2018
- Revised Date: 4 February 2019
- Accepted Date: 14 March 2019

Please cite this article as: Avman, M.A., Osmotherly, P.G., Snodgrass, S., Rivett, D.A., Is there an association between hip range of motion and nonspecific low back pain? A systematic review, *Musculoskeletal Science and Practice* (2019), doi: https://doi.org/10.1016/j.msksp.2019.03.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Running he	ead: Association between hip range and low back pain
2		
3	Title:	Is there an association between hip range of motion and
4		nonspecific low back pain? A systematic review
5		
6	Authors:	1. Maya Abady Avman, MPT
7		School of Health Sciences
8		Faculty of Health and Medicine
9		The University of Newcastle
10		Callaghan, Australia
11		2. Peter G. Osmotherly, PhD
12		School of Health Sciences
13		Faculty of Health and Medicine
14		The University of Newcastle
15		Callaghan, Australia
16		3. Suzanne Snodgrass, PhD
17		School of Health Sciences
18		Faculty of Health and Medicine
19		The University of Newcastle
20		Callaghan, Australia
21	Z	4. Darren A. Rivett, PhD
22		School of Health Sciences
23		Faculty of Health and Medicine
24		The University of Newcastle
25		Callaghan, Australia

26		
27	Institution	
28	School of	Health Sciences
29	Faculty of	f Health and Medicine
30	The Unive	ersity of Newcastle
31	Callaghar	n, Australia.
32		
33	Acknowledgement of pre	sentation:
34	Platform presentation of pro	eliminary findings: Is there an association between
35	hip range of movement and	d nonspecific low back pain? A Systematic Review.
36	Israeli Physical Therapy Sc	ociety conference, May 9 th , 2018. Israel.
37		
38	Financial Support: Nil	
39		
40	Conflict of interest: the au	uthors have no relationship/ conditions/
41	circumstances that present	a potential conflict of interest
42	R	
43	Correspondence author:	Maya Abady Avman
44		School of Health Sciences
45		Faculty of Health and Medicine
46		The Hunter Building
47		The University of Newcastle
48		Callaghan NSW Australia 2308
49		Maya.Abady@uon.edu.au, +972 544 334 320
50		

Reprints are not available

Clinical trial registration and number: Not applicable

Is There an Association Between Hip Range of Motion and Non-Specific Low	1
Back Pain? A Systematic Review	2
	3
ABSTRACT	4
Objective: To systematically review whether there is an association between hip	5
range of motion (ROM) and nonspecific low back pain (NSLBP).	6
Data Sources: MEDLINE, EMBASE, Cochrane library, PsychINFO, CINAHL and	7
AMED databases were searched from year of inception until October 31 st , 2018,	8
using a combination of LBP and hip joint search terms. Commonly cited journals	9
were also hand searched within the previous two years.	10
Study Selection: Two reviewers independently screened identified articles, by title	11
and abstract and then by full-text. After first round screening of 2908 identified	12
records, 248 progressed to full-text screening. Due to the heterogeneity of studies	13
identified, post hoc inclusion criteria of English language, studies comparing subjects	14
with NSLBP and healthy controls, cross-sectional design, and clinical measures of	15
hip ROM were applied. Twenty-four records were finally included.	16
Data Extraction: Extracted data included population characteristics, duration and	17
severity of NSLBP, hip movement direction, testing position, measurement tool and	18
between-group difference. The Quality Assessment Tool for Observational Cohort	19
and Cross-Sectional Studies was used to assess for study bias.	20

Data Synthesis: Hip flexion ROM was measured in seven studies, extension in 13,	21
internal rotation (IR) in 14, external rotation (ER) in 13, abduction in six, and	22
adduction in only two studies. Among all directions tested, IR ROM was reported in	23
more studies as significantly reduced in NSLBP subjects compared to healthy	24
individuals. Overall the quality of evidence was very low. Common sources of study	25
bias included lack of sample size justification, blinding of outcome assessors,	26
adjusting for key confounders, and poor reporting.	27
Conclusion: There is very low-quality evidence to support an association between	28
limited hip ROM and NSLBP. Limited hip IR ROM was the only movement	29
impairment found to be significantly associated with NSLBP, however this should be	30
viewed with caution due to the low-quality supportive evidence. Further studies are	31
needed.	32
	33
Key Words: low back pain, hip joint, kinematics, range of motion	34
	35
	36
Low back pain (LBP) is a disorder affecting approximately 80% of the population at	37
some point in their life, and has been associated with morbidity, functional disability	38
and being a burden on the medical system and society. ¹⁻⁶ The majority of LBP	39
presentations are of a non-specific nature (i.e., no identifiable pathology such as	40
malignancy, infection, fracture, or inflammatory diseases) (National Collaborating	41

Centre for Primary Care (UK), 2009), ⁷ and up to 65% of individuals may develop

chronic LBP with symptoms persisting for at least a year following the initial onset.

4,5,8

Whilst structures in the lumbo-sacral region are usually implicated in non-specific	46
LBP (NSLBP), ⁷ movement interaction between the hip joint and the spine has been	47
of increasing interest since the 1990s. ^{9,10} The anatomical proximity of the hip joint,	48
and its associated contributions to lumbo-pelvic kinematics and function, have been	49
recognized as potential factors contributing to LBP. ¹¹ Notably, limitation and	50
asymmetry in hip range of motion (ROM) in different planes has been found to be	51
present in NSLBP subjects both in clinical settings and in common activities of daily	52
living ^{12,13} , such as sit-to-stand, forward bending and rotation-related activities ¹⁴⁻¹⁶ .	53

54

45

There is a plethora of evidence supporting the kinematic relationship between the hip 55 joint and NSLBP, and in their clinical guidelines for LBP, Delitto et al (2012) ¹⁷ 56 recommend the assessment and treatment of ROM of the hip joint in patients with 57 chronic LBP. ^{4,17-20} Consistent with this recommendation, adequate hip internal 58 rotation (IR) ROM (>35⁰) unilaterally, has been found to be a criterion predicting 59 improvement in NSLBP following spinal manipulation, and unilateral average rotation 60 $\geq 25^{\circ}$ was found to be a criterion predicting improvement in NSLBP following a 61 Pilates-based exercise program.^{21,22} Indeed, there is emerging evidence to support 62 conservative treatment for improving hip mobility in NSLBP patients, ²³⁻²⁷ as well as 63 substantial evidence documenting the resolution of NSLBP and restoration of low 64 back function following surgical intervention for hip disease. ^{28,29} 65

66

There is also growing evidence indicating an association between altered hip	67
kinematics during functional tasks and NSLBP, ^{2,20,30,31} and with the development of	68
NSLBP in healthy individuals. ³²⁻³⁴ Two recent systematic reviews investigated the	69

kinematic relationship between the hip and the lumbar spine in individuals with	70
NSLBP or a lumbar spine disorder. ^{35,36} However, these reviews were either limited	71
to the effect of surgical interventions targeted at the hip for LBP and lacked critical	72
appraisal of the evidence, ³⁶ or were limited to the relationship between hip rotation	73
ROM and NSLBP. ³⁵	74
	75
This study is part of a larger investigation examining firstly whether there is an	76
association between hip joint kinematics and NSLBP (as measured by ROM	77
(research question (RQ) 1 ¹) and during movement (RQ1 ²)), and secondly whether	78
hip joint treatment is associated with improvement in NSLBP (RQ ²). The aim of the	79
present study was restricted to determining whether there is an association between	80
hip joint ROM in any plane and NSLBP (RQ1 ¹). It is proposed that a more complete	81
understanding of the relationship between the hip joint and LBP may assist clinicians	82
in better assessing and managing the complex clinical presentation of NSLBP.	83
	84
METHODS	85
	86
This systematic review followed the Preferred Reporting Items for Systematic	87
Reviews and Meta-Analyses (PRISMA) guidelines. 37	88
	89
Search strategy	90
The following databases were systematically searched for studies from year of	91
inception to 31 st October 2018, that investigated an association between hip joint	92
kinematics and LBP, including the effect of hip treatment on LBP: Medline, Embase,	93
Cochrane library, PsychINFO, CINAHL and AMED. Following the Cochrane Back	94

Review Group's guidelines, ³⁸ the LBP search string included but was not limited to	95
the following key words: dorsalgia, back pain, backache, low back pain, coccydynia,	96
sciatica, lumbago, and back disorder. The hip search string used 'Hip joint' MeSH	97
terms including, but not limited to: hip joint, hip dislocation, hip prosthesis, hip	98
osteoarthritis, hip fractures, arthroplasty, replacement, hip contracture, hip injuries,	99
and femoroacetabular (see Appendix 1 for the detailed search strategy and key	100
words for all databases). In addition, commonly cited journals were also hand	101
searched for relevant papers from 2015 to 31 st October 2018.	102
	103
Upon search completion, two investigators (MA, RH) independently reviewed titles	104
and abstracts to identify eligible studies before undertaking full text screening.	105
Identified studies were downloaded into reference management software (EndNote	106
X8 ^a , Thomas Reuters, New York, NY) and duplicates were removed. Disagreement	107
regarding inclusion of articles was resolved by discussion between the two	108
investigators, and a third independent reviewer (PO) arbitrated when consensus	109
could not be reached.	110
	111
Study selection	112
'LBP' was operationally defined as pain localized below the costal margin and above	113
the inferior gluteal folds (with or without leg pain) of any duration and severity,	114
including any known history of LBP.	115
	116
Studies reporting 'hip joint kinematics' had to include one or more of the following:	117
measurement of movement or ROM (active or passive, cardinal or non-cardinal	118
planes of movement), movement patterns of the femoroacetabular articulation (e.g.,	119

sit-to-stand and other functional tests), or hip joint muscle length (e.g., iliopsoas,	120
piriformis), including the Thomas test and its modified versions given its common use	121
in clinical practice and research to assess hip joint extension. Included studies had to	122
specify that their aim was to measure hip joint ROM and/ hip flexor muscle length	123
and did not include measurements not primarily assessing hip joint movement (e.g.,	124
straight leg raise test), muscle strength or motor control, and subjective self-reports	125
relating to hip joint movement (e.g., stiffness, locking, catching) or pain. 'Hip joint	126
treatment' referred to any interventional modality (including surgical) that was	127
primarily targeted towards the hip joint.	128

129

Articles were not restricted by language, provided the title and abstract were in 130 English at first stage screening. Studies were excluded if the population investigated 131 was under 18 years of age or was diagnosed with a specific LBP pathology (e.g., 132 fracture, osteoporosis, ankylosing spondylitis), and if they involved cadavers, 133 animals, or computer or other models. Reviews, commentaries, letters or editorials 134 were also excluded. Due to the heterogeneity of study designs and populations 135 investigated, we applied post hoc inclusion criteria of studies using only clinical 136 measurements of hip ROM, studies that compared between NSLBP and non-NSLBP 137 subjects, and cross-sectional designs in the English language. 138

139

Data extraction

140

The lead reviewer (MA) extracted the following data from the reviewed full texts: 141 population type and characteristics, age, gender, duration and severity of NSLBP 142 (e.g., visual analogue scale, Oswestry Disability Index score), hip movement 143 measured for ROM (flexion, extension, IR, external rotation (ER), abduction, 144

adduction), measurement mean value, and clinical measurement tool	145
(active/passive; goniometer, inclinometer, motion tracking device, other).	146
	147
Results for between-group differences in hip ROM were extracted and, where	148
possible, calculated for mean difference, 95%CI, p value and effect size (Cohen's d).	149
	150
Quality appraisal and data synthesis	151
Risk of bias across studies was assessed using the NIH Quality Assessment Tool for	152
Observational Cohort and Cross-Sectional Studies (National Heart, Lung, and Blood	153
Institute; National Institutes of Health; U.S. Department of Health and Human	154
Services). ³⁹ Inapplicable items related to whether exposures were measured prior to	155
outcomes, whether the timeframe was sufficient for establishing an association	156
between exposure and outcome, whether exposures were measured more than	157
once over time, and loss to follow-up.	158
	159
We used the GRADE approach ⁴⁰⁻⁴⁹ to evaluate the quality of the overall body of	160
evidence in answering the study question. Careful consideration was given to	161
common limitations of observational studies as suggested by Guyatt et al (2011) 49	162
including failure to develop and apply eligibility criteria, flawed measurements of	163
exposure and outcome, and failure to adequately control confounding. In addition,	164
inconsistencies in findings and high risk of bias in the body of evidence may also	165
impact the quality of the body of evidence. 40-49	166
	167

RESULTS

169

	170
The initial search yielded 3714 results of which 2908 progressed to first round	171
screening (title and abstract) after duplicates were removed, with 248 records	172
progressing to full text screening. Following application of the post hoc inclusion	173
criteria, 24 records remained. Agreement between the two reviewers was	174
'substantial' for title and abstract screening with κ =0.70 (95%CI 0.65-0.75), and	175
'moderate' for full text screening with κ =0.60 (95%CI 0.50-0.70). Of the 48 episodes	176
of disagreement, 44 were resolved by consensus between the two reviewers (17	177
included, 27 excluded), with four arbitrated by the third reviewer, and determined to	178
be included (prior to application of post hoc criteria). Post hoc 24 studies were	179
included in this review as they directly addressed this study's research question. See	180
Figure 1 for the study selection process.	181
	182
Quality appraisal synthesis	183
The overall quality of the body of evidence was very low with inconsistencies in	184
findings and serious study limitations increasing the risk of bias, notably the lack of	185
blinding of outcome assessors and adjustment for potential confounders, inadequate	186
sample size justification and power calculation, and lack of testing for the strength of	187
association between different durations of NSLBP and ROM limitations. Details of	188
the risk of bias for each study, according to the NIH quality assessment tool, are	189
outlined in Table 1.	190
	191
Hip ROM measurement	192

Table 2 outlines the data extracted from each of the included studies. Across the193included studies, hip range of movement was tested in all planes. Flexion was tested194

in seven studies, extension in 13 studies (using the Thomas test in eight), IR in 14	195
studies, ER in 13 studies, abduction in six studies and adduction in only two studies.	196
Measurement tools used included a goniometer (n=17), inclinometer (n=5), motion	197
tracking system (n=1), and one study did not describe the tool used. Across the	198
studies, measurements included both active and passive ROM, however in some	199
studies this discrimination was not made.	200
CUP III MARINE	

ACCEPTED MANUSCRIPT	
Associations between NSLBP and hip ROM	201
	202
	203
Flexion	204
Seven studies compared hip flexion ROM between healthy individuals and those	205
with NSLBP, of which four tested this in supine lying, and three did not describe how	206
this was measured. Three studies used active ROM testing, one used passive ROM	207
testing, and three did not describe whether they used active or passive testing. Six	208
studies used a goniometer and one study used an inclinometer. The majority (n=6)	209
of studies showed that individuals with NSLBP tended to have a slight limitation of	210
hip flexion (5 ⁰ -10 ⁰), however differences were either marginal or not significant	211
(Figure 2a). Most studies failing to find a difference had small sample sizes and may	212
have been underpowered to detect a clinically meaningful difference in flexion ROM.	213
The overall quality of evidence related to hip flexion ROM was very low due to	214
inconsistent findings and risk of bias relating to lack of blinding of outcome	215
assessors, poor reporting of ROM measurement, inadequate adjustment for	216
confounders, and lack of sample size justification.	217
	218
Extension	219
Thirteen studies compared hip extension ROM between individuals with NSLBP and	220
healthy individuals, but eight of these used the Thomas test (or its modified version).	221
Of the remaining five studies, two used active ROM testing, one used passive ROM	222
testing and two did not describe whether they used active or passive testing.	223
Extension ROM testing in these five studies was undertaken in prone lying, except	224
for one study which tested participants in side lying. Of the eight studies which used	225

the Thomas test (or its modified version) to examine for between-group differences	226
in hip flexor (iliopsoas) length, four of these studies intended to measure	227
iliopsoas/other hip flexor muscle length rather than hip joint extension ROM per se.	228
Ten of the 13 studies used a goniometer, two studies used an inclinometer and one	229
study did not describe the measurement tool.	230
	231
Most studies failed to demonstrate a statistically significant difference between	232
individuals with NSLBP and healthy individuals with only four studies reporting a	233
significant difference between groups of up to approximately 10 ⁰ reduction in hip	234
extension ROM in NSLBP individuals (Figure 2b). One study ⁵⁰ showed an increase	235
in hip extension ROM in NSLBP individuals; however, this study suffered from flawed	236
measurements of both exposure and outcome, as well as lack of adjustment for	237
confounders. Overall the quality of evidence for changes in hip extension ROM was	238
very low due to inconsistencies in findings, variability in ROM measurement methods	239
(see Figure 2b), and risk of bias relating to lack of adjustment for confounders and	240
blinding of assessors.	241
	242
Internal rotation	243
Fourteen studies compared hip IR ROM between individuals with NSLBP and	244
healthy individuals. Five studies used active ROM testing, five used passive ROM	245
testing, one used both, and three did not describe whether they used active or	246
passive testing. Nine studies used a goniometer and five studies used an	247
inclinometer. Most studies (n=8) tested for IR ROM in prone lying, one study	248
measured in supine lying, one study measured in sitting, and four did not describe	249
the test position for this movement. The majority of studies (n=10) demonstrated a	250

tendency for a limitation of IR ROM in individuals with NSLBP, with five studies	251
reaching significance (Figure 2c). Significant IR limitations were up to 10 ⁰ and were	252
found either unilaterally (left side (n=1), lead hip (n=2)) or bilaterally (n=2),	253
regardless of whether individuals were participating in rotation-related sports or not.	254
Again, the overall quality of evidence was very low mainly due to inconsistencies in	255
findings, with a high risk of bias relating to lack of adjusting for confounders, blinding	256
of outcome assesors, and sample size justification.	257

258

259

Thirteen studies compared hip ER ROM between individuals with NSLBP and 260 healthy individuals. Six studies used active ROM testing, four used passive ROM 261 testing, one used both, and two did not indicate whether testing was active or 262 passive. Seven studies used a goniometer, five studies used an inclinometer, and 263 one study used a motion tracking system. Nine studies tested for this movement in 264 prone lying, one study tested in sitting, and three did not describe the position of 265 testing. The majority (n=7) of studies showed a limitation of ER ROM of up to 10⁰ in 266 individuals with NSLBP, but only two studies reached statistical significance, of 267 which one included only females in the sample tested (Figure 2d). The high risk of 268 bias relating to lack of adusting for confounders, blinding of assesors and sample 269 size justification rendered the quality of the body of evidence for a limitation of ER 270 ROM as very low. 271

272

273

Abduction and adduction

External rotation

Six studies compared hip abduction ROM between individuals with NSLBP and 274 healthy individuals. Except for one study which did not describe the position of 275

testing, all studies measured this in supine lying, one of which had the participant's	276
knees flexed and the lower leg hanging off the treatment table. Two studies used	277
active ROM testing, and four did not indicate whether measurement was active or	278
passive. Only two studies tested for a between-group difference in adduction ROM,	279
of which one tested this actively in supine lying, and the other did not describe the	280
position of testing and whether this was measured actively or passively. All studies	281
used a standard goniometer. Differences were minimal, with no studies	282
demonstrating a significant difference, and there was no consistent tendency for a	283
greater or lesser range in individuals with NSLBP for either movement (Figures 2e-f).	284
The overall quality of evidence was low with serious limitations due to flawed or	285
poorly reported measurements of ROM, as well as lack of blinding of assessors. In	286
relation to adduction, there is simply not enough evidence to meaningfully comment	287
on its association with NSLBP.	288

DISCUSSION

This systematic review provides a comprehensive review of the literature pertaining293to the association between triplanar hip ROM and NSLBP. Despite there being294relatively few studies demonstrating a statistically significant difference in hip ROM295between individuals with NSLBP and healthy individuals, there is a general tendency296for a reduction in hip ROM in NSLBP participants in the sagittal and horizontal297planes of movement. For studies that reported significant between-group differences,298approximately half reported mean differences that were \geq 5°, which is greater than299

the standard error of measurement for commonly used clinical tools such as	300
goniometers and inclinometers (ranging from 3-4 degrees). ⁵¹	301

302

The lack of consistent between-group differences in hip ROM between individuals303with NSLBP and healthy individuals in the studies in this review may suggest that for304certain hip movements, any such difference is minimal or perhaps even non-existent.305Alternatively, if only a proportion of patients with NSLBP have hip impairments, it306perhaps isn't surprising to find that there is often no significant difference between307groups of patients with NSLBP and groups of people without NSLBP. Any difference308would be 'washed out' by those without any hip impairment.309

310

The variations in findings between studies may also be explained by various 311 differences in the measurement methodologies employed and their reporting. 312 Studies used both active and passive ROM testing, and some did not describe the 313 tools, or the positions used. However, passive and active ROM testing has been 314 shown to differ for a given joint, as the latter may be influenced by muscle strength, 315 motor control, and pain, and may not be sensitive enough to detect a difference in 316 people with NSLBP. ⁵² True intra-articular kinematics has been described as the joint 317 motion regardless of the cause of motion, and passive ROM has commonly been 318 found to be significantly greater than active ROM in healthy individuals. ⁵³ On the 319 other hand, passive ROM testing requires adequate handling skills of the clinician. 320 Both of the above considerations may have accounted for some of the differences 321 found between studies and have affected the quality of the evidence due to flawed or 322 poor measurement reporting. As there is still some conjecture in the literature as to 323 the most reliable and valid way to assess joint ROM, researchers should define 324

clearly their objectives in measuring ROM and their methods. In particular, it is of325importance to compare between ROM measurements obtained actively and326passively, as suggested by the American Medical Association. 53 Another possible327reason for the inconsistencies found between studies may be differences in samples328tested, particularly proportions of male and female participants. This may have also329affected the grading of the quality of the body of evidence.330

331

Many studies specifically tested for hip-related muscle length (e.g., hip flexors, 332 adductors) while reporting the results as hip joint ROM, and in other studies it was 333 not clear whether the objective was to measure joint ROM or muscle length. Since a 334 correlation between hip muscle flexibility and joint angle of movement is yet to be 335 established, ^{54,55} caution should be exercised using muscle length measurement to 336 indicate overall joint ROM in a particular direction; especially if the muscles in 337 question cross more than one joint, which has been the case in some studies (e.g., 338 Thomas test for hip flexors including rectus femoris as a proxy for hip extension 339 ROM, adductor muscle length as a proxy for hip abduction ROM). However, despite 340 the possible limitation of measurement of hip muscle length, these studies were 341 included in the current review as impaired hip muscle length may be a factor 342 differentiating individuals with NSLBP and thus may be of importance for clinicians to 343 examine. Noteworthy is the study by Van Dillen et al 2000, ⁵⁶ which was the only 344 study to differentiate between the different muscles crossing the hip and knee by 345 using four positions of the Thomas test, with a significant reduction in hip extension 346 (with the knee kept straight) in the NSLBP group. 347

A common risk of bias across the studies was controlling for confounders, which is of	349
particular importance in cross-sectional study designs. ⁴⁹ Matching participants with	350
NSLBP to healthy participants regarding potential confounding factors such as age,	351
gender, body mass index and occupation/activity level occurred in eight of the 24	352
studies included in this review, of which five used independent t-tests or between-	353
group 2x2 ANOVA rather than paired t-tests, or a repeated measure/mixed design	354
ANOVA, with only two studies controlling for Type 1 error. In addition, many studies	355
that compared sides with the various hip movements in NSLBP versus healthy	356
subjects, used multiple simple t-tests without applying a Bonferroni correction rather	357
than using a 2x2 mixed design ANOVA. This may have affected the strength of any	358
associations, especially in instances where differences did not quite reach	359
significance. Two relevant confounders which were not specifically tested for in any	360
study are joint hypermobility syndrome and anatomical variations of the	361
femoroacetabular joint. Joint hypermobility syndrome is prevalent in up to 30% of the	362
general population and has been found to be positively associated with LBP. 57,58 In	363
addition, there is emerging evidence to support an association between	364
femoroacetabular anteversion and NSLBP. ⁵⁹ Although further research is needed to	365
determine the precise nature of any associations between hip ROM in individuals	366
with NSLBP and anatomical variations, these may influence hip ROM as a	367
mechanism of compensation for any malalignment of the femoral head in the	368
acetabulum, and as such may need to be considered as a confounder. 60,61	369

370

Although this review did not find strong and consistent evidence to support a371difference in hip ROM between individuals with and without NSLBP, it is plausible372that any impaired or asymmetrical hip movement in any plane could affect the rest of373

the kinematic chain and may contribute to altered coordination of the lumbo-pelvic-	374
hip complex during functional movement, and vice versa. This could result in	375
increased or abnormal mechanical forces acting on the lumbar spine, potentially	376
contributing to the onset or persistence of NSLBP. 62-65 In addition, as individuals	377
with NSLBP tend to move less from their lumbar spine, normal hip ROM is important	378
for adequate function. 66	379

Hip movement directions

Although there appears to be a tendency for slightly reduced hip flexion in 382 participants with NSLBP, there is not enough evidence from the current review to 383 confirm or refute such an association. Mellin (1990)⁶⁷ and Adegoke and Fapojuwo 384 (2010) ⁶⁸ both found significantly limited hip flexion in NSLBP participants compared 385 to healthy individuals, however these limitations were minor, unilateral and mainly in 386 men. Consistent with this, limited hip flexion has been reported elsewhere to be a 387 predictive risk factor for severe LBP at three-year follow-up, ⁶⁹ however this 388 relationship was not replicated in a recent study at 5-year follow-up. ³³ Further, there 389 is emerging evidence, albeit low level consisting mainly of case series, supporting 390 conservative treatment for improving hip flexion ROM as being associated with 391 reduced pain and improved function in individuals with NSLBP.⁷⁰ 392

393

380

381

Hip extension ROM was commonly measured using the Thomas test or its modified394version, both of which have been recently found to have poor validity for measuring395hip joint extension ROM, especially in individuals with NSLBP. 4,52,54This serious396limitation has contributed to the very low quality grading of this evidence. In those397studies reporting reduced extension on active movement testing in the prone lying398

position, this was found mainly in females and unilaterally (Mellin 1990, 67 Ashmen et399al 1996 71 respectively). However, it is noteworthy that active hip extension400performed in prone lying has been proposed to be a provocative test for NSLBP and401it has thus been suggested that it should not be used as a hip movement impairment402test in people with NSLBP.62,72 This variation in testing may also have contributed to403inconsistency of findings between studies, and therefore a reduction in the overall404405

406

Although the findings in the current review related to hip rotation ROM were 407 inconsistent, there were a greater number of studies reporting reduced or 408 asymmetric IR ROM than ER ROM in individuals with NSLBP, regardless of their 409 occupation and sport-related activities. This variability in findings in the horizontal 410 plane and evidence being of very low quality is interesting given that IR ROM \geq 35⁰ of 411 at least one hip is one of the criteria in a commonly cited clinical prediction rule for 412 selecting patients with NSLBP likely to benefit from manipulation of the lumbar spine. 413 ²² Similarly, Stolze et al (2012) ²¹ found that average hip rotation $\ge 25^{\circ}$ unilaterally 414 was a criterion predicting improvement following a Pilates-based program for 415 individuals with NSLBP. In addition, hip IR has recently been reported to be 416 associated with LBP in a systematic review by Sadeghisani et al (2015)³⁵, and has 417 been found to be a provocative test for LBP.⁷³ The studies comprising the evidence 418 for hip IR ROM changes in the present review were overall of very low quality, 419 perhaps somewhat accounting for the inconsistency in findings. 420

421

Whilst the various study's findings regarding ER ROM limitations in LBP subjects are422somewhat inconsistent, impaired pelvic-hip coordination, such as greater and early423

lumbopelvic rotation, during hip ER in prone lying in individuals with LBP has bee	en 424
reported elsewhere. ^{20,74,75} Hence, it is possible there may be some relationship	425
between hip movement in the horizontal plane and NSLBP, and this is supported	by 426
growing evidence of improvement in NSLBP following manual therapy treatment	427
directed at increasing hip IR and ER ROM. 23,76,77	428

429

Frontal plane movement was the least commonly investigated, and all studies that	430
examined abduction and adduction ROM differences between people with and	431
without NSLBP found no significant difference. ^{72 34} However, it should be noted the	432
lack of research on differences in adduction ROM precludes any meaningful	433
conclusions being drawn. Further research is needed to determine whether there is	434
an association between frontal plane ROM and NSLBP.	435

LIMITATIONS

437

436

438

439

There are several limitations to this review. First, we did not consider different levels 440 of pain or disability and different durations of NSLBP. This may be of importance as 441 hip ROM in acute LBP may present quite differently to that at other stages due to 442 pain intensity and related muscle spasm, especially as some hip ROM tests have 443 been proposed to be provocative in cases of NSLBP. ⁷³ Second, the inclusion of 444 studies measuring muscle length may have contributed to the difficulty in comparing 445 between studies and drawing conclusions. However, in many of those studies it was 446 not clear as to what was actually tested, and this did not become fully apparent until 447 afterwards at data extraction. Last, as all included studies were cross-sectional in 448

design (level 3.c evidence), ⁷⁸ this limits the inferences about relationships which449may be drawn. ⁷⁹450

CONCLUSIONS

452

453

451

This systematic review of cross-sectional studies (level 3 evidence) has revealed 454 there is very low quality evidence to either support or refute there being differences 455 in hip ROM in individuals with NSLBP as compared to healthy controls. The majority 456 of studies showing some reduction in hip ROM in participants with NSLBP were 457 mainly in internal rotation, despite the variability in the findings between different 458 studies. Whilst some clinical prediction rules and clinical guidelines recommend that 459 measurement of hip ROM be considered in the clinical examination of NSLBP 460 patients, ^{17,35} the very low quality of evidence in this review and the associated 461 inconclusive findings, suggest the practitioner should exercise caution in interpreting 462 limitations of hip ROM in their clinical practice. Better designed studies with stronger 463 internal validity are needed to resolve this question. 464

465

Future studies might particularly address passive hip extension ROM testing, frontal466plane (abduction, adduction) ROM testing, and whether asymmetry in hip ROM in all467planes of movement is associated with NSLBP. In addition, future research should468also address the minimal clinically important difference in hip ROM in individuals with469NSLBP in order to establish whether any significant reduction in ROM found should470be addressed in the management of NSLBP.471

472

References

1.	Zhou J, Ning X, Fathallah F. Differences in lumbopelvic rhythm between trunk flexion and extension. <i>Clinical biomechanics (Bristol: Ayon)</i> , 2016;32:274-279	482 483
2	Wong TK Lee RY Effects of low back pain on the relationship between the	484
2.	movements of the lumbar spine and hip. Hum Mov Sci. 2004:23(1):21-34	485
3	van Middelkoop M. Rubinstein SM. Kuijpers T. et al. A systematic review on	486
0.	the effectiveness of physical and rehabilitation interventions for chronic non-	487
	specific low back pain. European spine journal : official publication of the	488
	European Spine Society, the European Spinal Deformity Society, and the	489
	European Section of the Cervical Spine Research Society. 2011;20(1):19-39.	490
4.	Kim M-h, Yi C-h, Kwon O-y, et al. Comparison of lumbopelvic rhythm and	491
	flexion-relaxation response between 2 different low back pain subtypes.	492
	Spine. 2013;38(15):1260-1267.	493
5.	Itz CJ, Geurts JW, van Kleef M, Nelemans P. Clinical course of non-specific	494
	low back pain: a systematic review of prospective cohort studies set in	495
	primary care. European journal of pain (London, England). 2013;17(1):5-15.	496
6.	Haskins R, Rivett DA, Osmotherly PG. Clinical prediction rules in the	497
	physiotherapy management of low back pain: a systematic review. Man Ther.	498
	2012;17(1):9-21.	499
7.	Savigny P KS, Watson P, Underwood M, Ritchie G, Cotterell M, Hill D,	500
	Browne N, Buchanan E, Coffey P, Dixon P, Drummond C, Flanagan M,	501
	Greenough, C, Griffiths M, Halliday-Bell J, Hettinga D, Vogel S, Walsh D.	502
	Low back pain: Early management of persistent non-specific low back pain.	503
	Full guideline. London: National Collaborating Centre for Primary Care and	504
	Royal College of General Practitioners.; 2009.	505
8.	Slater SL, Ford JJ, Richards MC, Taylor NF, Surkitt LD, Hahne AJ. The	506
	effectiveness of sub-group specific manual therapy for low back pain: a	507
-	systematic review. Man Ther. 2012;17(3):201-212.	508
9.	Paquet N, Malouin F, Richards CL. Hip-spine movement interaction and	509
	muscle activation patterns during sagittal trunk movements in low back pain	510
	patients. Spine. 1994;19(5):596-603.	511
10.	Mellin G. Correlations of hip mobility with degree of back pain and lumbar	512
	spinal mobility in chronic low-back pain patients. Spine. 1988;13(6):668-670.	513
11.	Ottierski CM, MacNab I. Hip-spine syndrome. Spine (Phila Pa 1976).	514
	1983;8(3):316-321.	515

12.	Mellin G. Chronic low back pain in men 54-63 years of age. Correlations of physical measurements with the degree of trouble and progress after treatment. Spine 1986:11(5):421-426	516 517 518
13.	Cibulka MT, Sinacore DR, Cromer GS, Delitto A. Unilateral hip rotation range of motion asymmetry in patients with sacroiliac joint regional pain. <i>Spine.</i> 1998:23(9):1009-1015.	519 520 521
14.	Sung PS. A compensation of angular displacements of the hip joints and lumbosacral spine between subjects with and without idiopathic low back pain during squatting. <i>J Electromyogr Kinesiol.</i> 2013;23(3):741-745.	522 523 524
15.	Shum GLK, Crosbie J, Lee RYW. Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. <i>Spine.</i> 2005;30(17):1998-2004.	525 526 527
16.	Crosbie Jack NDP, Filho Ruben de Faria Negrão, Ferreira Paulo. Do people with recurrent back pain constrain spinal motion during seated horizontal and downward reaching? <i>Clin Biomech.</i> 2013;28(8):866-872.	528 529 530
17.	Delitto A, George SZ, Van Dillen LR, et al. Low back pain. <i>J Orthop Sports Phys Ther.</i> 2012;42(4):A1-57.	531 532
18.	Lee SW, Kim SY. Effects of hip exercises for chronic low-back pain patients with lumbar instability. <i>Journal of Physical Therapy Science</i> . 2015;27(2):345-348.	533 534 535
19.	Hoffman SL, Johnson MB, Zou D, Harris-Hayes M, Van Dillen LR. Effect of classification-specific treatment on lumbopelvic motion during hip rotation in people with low back pain. <i>Manual Ther.</i> 2011;16(4):344-350.	536 537 538
20.	Harris-Hayes M, Sahrmann SA, Van Dillen LR. Relationship between the hip and low back pain in athletes who participate in rotation-related sports. <i>Journal of Sport Rehabilitation</i> , 2009;18(1):60-75.	539 540 541
21.	Stolze LR, Allison SC, Childs JD. Derivation of a preliminary clinical prediction rule for identifying a subgroup of patients with low back pain likely to benefit from Pilates-based exercise. J Orthon Sports Phys Ther. 2012;42(5):425-436.	542 543 544
22.	Flynn T, Fritz J, Whitman J, et al. A clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. <i>Spine</i> , 2002;27(24):2835-2843.	545 546 547
23.	Lejkowski PM, Poulsen E. Elimination of intermittent chronic low back pain in a recreational golfer following improvement of hip range of motion impairments. <i>J Bodywork Mov Ther</i> , 2013;17(4):448-452.	548 549 550
24.	Grimshaw PN, Burden AM. Case report: reduction of low back pain in a professional golfer. <i>Med Sci Sports Exerc.</i> 2000;32(10):1667-1673.	551 552
25.	Childers MK, Wilson DJ, Gnatz SM, Conway RR, Sherman AK. Botulinum toxin type A use in piriformis muscle syndrome: a pilot study. <i>American journal of physical medicine & rehabilitation</i> . 2002;81(10):751-759.	553 554 555
26.	Boyle KL, Demske JR. Management of a female with chronic sciatica and low back pain: a case report. <i>Physiotherapy theory and practice.</i> 2009;25(1):44-54.	556 557 558
27.	Boyle KL. Managing a Female Patient with Left Low Back Pain and Sacroiliac Joint Pain with Therapeutic Exercise: A Case Report. <i>Physiotherapy Canada</i> . 2011;63(2):154-163	559 560
28.	Chimenti PC, Drinkwater CJ, Li W, Lemay CA, Franklin PD, O'Keefe RJ. Factors Associated With Early Improvement in Low Back Pain After Total Hip Arthroplasty: A Multi-Center Prospective Cohort Analyses. <i>J Arthroplasty</i> . 2016;31(1):176-179.	561 562 563 564 565

29.	Ben-Galim P, Ben-Galim T, Rand N, et al. Hip-spine syndrome: the effect of total hip replacement surgery on low back pain in severe osteoarthritis of the bip. <i>Spine (Phila Pa 1976)</i> 2007:32(19):2099-2102	566 567 568
30.	Porter JL, Wilkinson A. Lumbar-hip flexion motion. A comparative study	569
	between asymptomatic and chronic low back pain in 18- to 36-year-old men. Spine (Phila Pa 1976). 1997:22(13):1508-1513; discussion 1513-1504.	570 571
31.	Milosavljevic S, Milburn PD, Knox BW. The influence of occupation on lumbar	572
~~	sagittal motion and posture. <i>Ergonomics</i> . 2005;48(6):657-667.	573
32.	Nelson-Wong E, Flynn I, Callaghan JP. Development of active hip abduction	574
	as a screening test for identifying occupational low back pain. J Orthop Sports Phys Ther. 2009;39(9):649-657.	575 576
33.	McGill S. Frost D. Lam T. Finlay T. Darby K. Cannon J. Can fitness and	577
	movement quality prevent back injury in elite task force police officers? A 5-	578
	year longitudinal study. <i>Ergonomics.</i> 2015:58(10):1682-1689.	579
34.	Bussey MD, Kennedy JE, Kennedy G. Gluteus medius coactivation response	580
	in field hockey players with and without low back pain. Phys Ther Sport.	581
	2016;17:24-29.	582
35.	Sadeghisani M, Manshadi FD, Kalantari KK, et al. Correlation between Hip	583
	Rotation Range-of-Motion Impairment and Low Back Pain. A Literature	584
	Review. Ortop Traumatol Rehabil. 2015;17(5):455-462.	585
36.	Redmond JM, Gupta A, Hammarstedt JE, Stake CE, Domb BG. The Hip-	586
	Spine Syndrome: How Does Back Pain Impact the Indications and Outcomes	587
_	of Hip Arthroscopy? Arthroscopy. 2014;30(7):872-881.	588
37.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for	589
	systematic reviews and meta-analyses: the PRISMA statement. Journal of	590
00	<i>clinical epidemiology.</i> 2009;62(10):1006-1012.	591
38.	Furlan AD, Pennick V, Bombardier C, and van Tulder M. 2009 Updated	592
	Croup Spine 2000: 24 (18):1020 1041	593
20	Gloup. Spine. 2009; 34 (18):1929-1941. National Institutes of Health National Heart L. and Blood Institute. Quality	594
39.	national institutes of Health. National Healt L, and Blood institute. Quality	595
	https://www.phlbi.pib.gov/bealth-topics/study-guality-assessment-tools	590
	Accessed June 1, 2017	598
40	Balshem H. Helfand M. Schünemann H.J. et al. GRADE guidelines: 3. Rating	599
10.	the quality of evidence. Journal of clinical epidemiology, 2011:64(4):401-406.	600
41.	Guvatt G. Oxman AD. Akl EA. et al. GRADE guidelines: 1. Introduction—	601
	GRADE evidence profiles and summary of findings tables. <i>Journal of clinical</i>	602
	epidemiology. 2011;64(4):383-394.	603
42.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 2. Framing the	604
	question and deciding on important outcomes. Journal of clinical	605
	epidemiology. 2011;64(4):395-400.	606
43.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality	607
	of evidence—imprecision. Journal of clinical epidemiology. 2011;64(12):1283-	608
	1293.	609
44.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the	610
	quality of evidence—indirectness. Journal of clinical epidemiology.	611
	2011;64(12):1303-1310.	612
45.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating the	613
	quality of evidence—inconsistency. Journal of clinical epidemiology.	614
	2011;64(12):1294-1302.	615

46.	Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence—publication bias. <i>Journal of clinical epidemiology.</i> 2011;64(12):1277-1282	616 617 618
47.	Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology.	619 620
48.	Guyatt GH, Oxman AD, Sultan S, et al. GRADE guidelines: 9. Rating up the quality of evidence. <i>Journal of clinical epidemiology.</i> 2011;64(12):1311-1316.	621 622 623
49.	Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias). <i>Journal of clinical epidemiology</i> . 2011;64(4):407-415	624 625
50.	Stuelcken MC, Ginn KA, Sinclair PJ. Musculoskeletal profile of the lumbar spine and hip regions in cricket fast bowlers. <i>Phys Ther Sport.</i> 2008;9(2):82-	627 628
51.	oo. Cheatham S, Hanney WJ, Kolber MJ. Hip range of motion in recreational weight training participants: A descriptive report <i>International Journal of</i> Sports Physical Therapy, 2017:12(5):764-773	629 630 631
52.	Bruno PA, Goertzen DA, Millar DP. Patient-reported perception of difficulty as a clinical indicator of dysfunctional neuromuscular control during the prone hip extension test and active straight leg raise test. <i>Manual Ther.</i> 2014;19(6):602- 607.	633 634 635 636
53.	Berryman Reese N, and Bandy WD. <i>Joint Range of Motion and Muscle Length Testing-E-Book.</i> 3 ed: Elsevier- Health Sciences Devision; 2016.	637 638
54.	Vigotsky AD, Lehman GJ, Beardsley C, Contreras B, Chung B, Feser EH. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled. <i>PeerJ</i> . 2016;4:e2325.	639 640 641
55.	Harvey D. Assessment of the flexibility of elite athletes using the modified Thomas test. <i>British Journal of Sports Medicine.</i> 1998;32(1):68-70.	642 643
56.	Van Dillen LR, McDonnell MK, Fleming DA, Sahrmann SA. Effect of knee and hip position on hip extension range of motion in individuals with and without low back pain. <i>J Orthop Sports Phys Ther.</i> 2000;30(6):307-316.	644 645 646
57. 58.	Russek LN. Hypermobility syndrome. <i>Phys Ther.</i> 1999;79(6):591-599. Corben T, Lewis JS, Petty NJ. Contribution of lumbar spine and hip movement during the palms to floor test in individuals with diagnosed bypermobility syndrome. <i>Physiotherapy theory and practice</i> , 2008;24(1):1-12	647 648 649
59.	Tansey P. Hip and low back pain in the presence of femoral anteversion. A case report. <i>Manual Ther.</i> 2015;20(1):206-211.	651 652
60.	Chadayammuri V, Garabekyan T, Bedi A, et al. Passive Hip Range of Motion Predicts Femoral Torsion and Acetabular Version. <i>The Journal of bone and</i> <i>joint surgery American volume</i> . 2016:98(2):127-134.	653 654 655
61.	Buckland AJ, Vigdorchik J, Schwab FJ, et al. Acetabular Anteversion Changes Due to Spinal Deformity Correction: Bridging the Gap Between Hip and Spine Surgeons IBIS 2015:97(23):1913-1920	656 657
62.	Zafereo J, Devanna R, Mulligan E, Wang-Price S. Hip stiffness patterns in lumbar flexion- or extension-based movement syndromes. <i>Archives of</i>	659 660
63.	Malarvizhi D, Kishorekumar M. Evaluation of hip joint range of motion in mechanical chronic low back pain-An observational study. <i>International Journal of Pharma and Bio Sciences</i> . 2016;7(4):B244-B248.	662 663 664

64.	Kim SH, Kwon OY, Yi CH, Cynn HS, Ha SM, Park KN. Lumbopelvic motion	665
	during seated hip flexion in subjects with low-back pain accompanying limited	666
	hip flexion. European Spine Journal. 2014;23(1):142-148.	667
65.	Dolan P, Adams MA. Influence of lumbar and hip mobility on the bending	668
	stresses acting on the lumbar spine. <i>Clin Biomech.</i> 1993;8(4):185-192.	669
66.	Hart JM, Kerrigan DC, Fritz JM, Ingersoll CD. Jogging Kinematics After	670
	Lumbar Paraspinal Muscle Fatigue. Journal of Athletic Training.	671
	2009;44(5):475-481.	672
67.	Mellin G. Decreased joint and spinal mobility associated with low back pain in	673
	young adults. J Spinal Disord. 1990;3(3):238-243.	674
68.	Adegoke BOA, Fapojuwo OA. Range of active hip motion in low back pain	675
	patients and apparently healthy controls. Internet Journal of Allied Health	676
	Sciences & Practice. 2010;8(3):8p.	677
69.	Adams MA, Mannion AF, Dolan P. Personal risk factors for first-time low back	678
	pain. Spine. 1999;24(23):2497-2505.	679
70.	Burns SA, Mintken PE, Austin GP, Cleland J. Short-term response of hip	680
	mobilizations and exercise in individuals with chronic low back pain: a case	681
	series. The Journal of Manual & Manipulative Therapy. 2011;19(2):100-107.	682
71.	Ashmen KJ, Buz Swanik C, Lephart SM. Strength and flexibility	683
	characteristics of athletes with chronic low-back pain. Journal of Sport	684
	Rehabilitation. 1996;5(4):275-286.	685
72.	Carlsson H, Rasmussen-Barr E. Clinical screening tests for assessing	686
	movement control in non-specific low-back pain. A systematic review of intra-	687
	and inter-observer reliability studies. <i>Man Ther.</i> 2013;18(2):103-110.	688
73.	Prather H, Cheng A, Steger-May K, Maheshwari V, Van Dillen L. Hip and	689
	Lumbar Spine Physical Examination Findings in People Presenting With Low	690
	Back Pain, With or Without Lower Extremity Pain. J Orthop Sports Phys Ther.	691
	2017;47(3):163-172.	692
74.	Scholtes SA, Gombatto SP, Van Dillen LR. Differences in lumbopelvic motion	693
	between people with and people without low back pain during two lower limb	694
	movement tests. <i>Clin Biomech.</i> 2009;24(1):7-12.	695
75.	Sadeghisani M, Sobhani V, Kouchaki E, Bayati A, Ashari AA, Mousavi M.	696
	Comparison of Lumbopelvic and Hip Movement Patterns During Passive Hip	697
	External Rotation in Two Groups of Low Back Pain Patients with and without	698
70	Rotational Demand Activities. Ortop. 2015;17(6):611-618.	699
76.	Miller RC, Hanney W, Young AIA, Klausher SSH. Application of regional	700
	interdependence in a 20-Year-old male collegiate baseball player with	701
	Recurrent nonspecific low back pain: a retrospective case report. Orthopaedic	702
77	Physical Therapy Practice. 2012;24(1):14-20.	703
11.	Burns SA, Miniken PE, Austin GP. Clinical decision making in a patient with	704
	secondary nip-spine syndrome. Physiotherapy theory and practice.	705
70	2011;27(5):384-397.	706
78.	JBI. NEW JBI Levels of Evidence.	707
	nilp.//juannaunyys.ury/assets/uuus/appluaun/JDI-Levels-ui-	708
70	evidence_2014.pdl. Accessed July Olli, 2010. Rowling A and Ebrahim S. Handbook of Haalth Research Mathaday	709
19.	investigation measurement and analysis McGrow Hill Education: 2006	710
	investigation, measurement and analysis. Nicolaw-fill Euroation, 2000.	/11 710
		112

Suppliers

^a EndNote X8.2 (Bld 13302). (2018). Clarivate Analytics

715 716

Figure 1. PRISMA flowchart for the selection of studies

*hand search of commonly cited journals

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses RQ: research question; RQ1¹: hip ROM clinical measurements RQ1²: femoroacetabular movement pattern measurements

RQ2: hip interventions in NSLBP

Figure 2. Hip ROM differences between NSLBP and healthy individuals

Figure 2A-F. Mean differences (MD, 95% CI) in hip ROM per movement direction, between NSLBP and healthy individuals for included studies, for which data was available.

A. Flexion; B. Extension; C. Internal rotation; D. external rotation; E. Abduction; F. Adduction.

* Lephart et al (2010), Van Dillen et al (2008): did not reach a significant difference after a Bonferroni correction, as reported in study.

^, †, ‡ single dot represents significant mean difference for which 95% CI not reported/ not able to extract data.

¥ MD not reported

CER AN

Study	Research question or objective in the paper clearly stated	Study population clearly specified & defined	Participation rate of eligible persons ≥50%	Subjects selected/ recruited from the same/ similar population (same time period); inclusion and exclusion criteria prespecified and applied uniformly to all participants	Sample size justification, power description/ variance and effect estimates provided	Exposure(s) of interest measured prior to the outcome(s) being provided	Timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if existed	For exposures that can vary in amount/ level, study examined different levels of exposure as related to the outcome	Exposure measures (independent variables) clearly defined, valid, reliable and implemented consistently across all study participants	Exposure(s) assessed more than once over time	Outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants	Outcome assessors blinded to the exposure status of participants	Loss to follow-up after baseline 20% or less	Key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)
Adegoke & Fapojuwo 2010	J	J	J	v	J	NA	NA	x	✓	NA	J	NR	NA	x
Ashmen et al 1996	J	J	NR	v	x	NA	NA	×	\checkmark	NA	J	NR	NA	<i>✓</i>
Bach et al 1985	J	J	J	\checkmark	x	NA	NA	x	J	NA	J	NR	NA	J
Chesworth et al 1994	J	J	NR	J	x	NA	NA	1	✓	NA	J	J	NA	J
Ellison et al 190	J	J	J	v	x	NA	NA	x	J	NA	J	NR	NA	x
French et al 2015	J	J	J	√	x	NA	NA	✓	✓	NA	J	NR	NA	x
Handrakis et al 2012	J	1	J	J	x	NA	NA	<i>✓</i>	1	NA	J	J	NA	<i>」</i>
Kishi et al 2009	J	J	J	v	x	NA	NA	x	v	NA	J	NR	NA	x
Lephart et al 2010	J	J	J	√	J	NA	NA	x	✓	NA	x	NR	NA	√
Mellin 1990	J	J	J	1	x	NA	NA	√	V	NA	J	NR	NA	J
Murray et al 2009	J	J	√	v	X J	NA	NA	x	✓	NA	J	J	NA	x
Nagai et al 2015	v	J	v	√	v	NA	NA	✓	v	NA	J	NR	NA	√
Nourbakhsh & Arab 2002	J	J	J	J	x	NA	NA	x	v	NA	J	NR	NA	J

Table 1. Methodologic quality and risk of bias assessment of included studies

Nourbakhsh et al 2006	J	1	V	✓	x	NA	NA	x	J	NA	J	NR	NA	x
Paatelma et al 2009	J	1	J	✓	x	NA	NA	x	J	NA	J	J	NA	x
Roach et al 2015	J	1	NR	x	x	NA	NA	x	J	NA	J	x	NA	x
Roncarati & McMullen 1988	V	v	v	v	x	NA	NA	x	v	NA	x	NR	NA	x
Scholtes et al 2009	J	1	v	✓	x	NA	NA	x	5	NA	J	NR	NA	x
Stuelcken et al 2008	J	J	V	v	x	NA	NA	x	J	NA	x	J	NA	x
Tanaka et al 2015	V	√	V	v	x	NA	NA	J		NA	J	NR	NA	√
Vad et al 2003	v	√	V	v	x	NA	NA	x	I I	NA	J	NR	NA	x
Vad et al 2004	J	J	V	J	x	NA	NA	x		NA	J	J	NA	x
Van Dillen et al 2000	J	J	J	v	x	NA	NA	5	J	NA	x	J	NA	√
Van Dillen et al 2008	J	J	J	v	x	NA	NA	x	J	NA	J	J	NA	1
NR: not repo	orted, N/	A: not	applic	able										

Table 2. Summary of 24 included studies

	POPUL	ATION	Hip ROM measured		Significant between group
Authors	NSLBP group	Non-NSLBP group	(AROM/ PROM/NR; position)	TOOL	differences: MD (º), 95% CI, p value, Cohen's <i>d</i>
Adegoke & Fapojuwo 2010 ¹	N=30 males, mean age 47.10 (SD 12.82) years, mechanical LBP referred to/ receiving physiotherapy at time of study (LBP duration NR); volunteers from surrounding hospitals	N=30 males, mean age 47.67 (SD 10.41) years; healthy, no recent (6 months) history of LBP/hip pain, staff members at university hospital. Matched by age (+/- 2), gender	AROM Flx, Ext, Abd, Add (supine); IR, ER (prone)	Goniometer	LESS Lt Flx LBP group: -4.83º (-8.49º, -1.17º), p=0.01, <i>d</i> 0.68
Ashmen et al 1996 ²	N=8 female athletes, age NR; CLBP(≧6 months prior to enrollment in study)	N=8 females, age NR; healthy. Matched by position and sport	AROM Ext (prone)	Goniometer	LESS Lt Ext LBP group: -7.81° (SD-NR), t=4.01, p 0.005, <i>d</i> >1.48
Bach et al 1985 ³	only compared betw non-runners: Runners: N= 45 (28 age male (19.4) yea years; Non-runners: N=46 (3 loss f/u)), age ma female (24.7) years	een runners and male,17 female); rs, female (25.7) (18 male,25 female le (26.7) years,	AROM Ext (TT), Abd (in K/F at edge of bed)	Goniometer (for TT), Specially designed goniometer (for Abd)	No correlation between LBP and hip ROM in runners/ non-runners.

		N 00 (11	4504		
Chesworth et al 1994 ⁴	N=20 (14 male, 6 female) LBP, mean age 38.8 (SD 15.3) years; LBP outpatients from physiotherapy department, recruited during initial visit; mean LBP duration 7.5 (SD 9.8) years. Students, light duty occupation, retirees, labor oriented	N=20 (14 male, 6 female), mean age 39.1 (SD 14.6) years; Healthy (no history of LBP in past 6 months); recruited from hospital &surrounding community. Matched by age (+/-5 years), gender, height, weight	AROM ER, IR (prone)	Goniometer	LESS IR, ER LBP group: IR Rt -18.5°, t=5.22, Lt -14.4°, t=5.33; ER Rt -14.6°, t=4.95, Lt -21.1°, t=7.16
Ellison et al 1990 ⁵	N=50 (21 male, 29 female), mean age 37.4 (SD 10.9) years; LBP patients referred to physiotherapy at rehabilitation centre, undergoing	N=100 (25 male, 75 female), mean age 26 (SD 5) years; healthy volunteers students and staff at university surrounding	PROM ER, IR (prone)	Goniometer	LESS IR LBP group: Lt: -6.40° (-10.26°; -2.53°), p=0.00, d 0.56 Rt: -5.50° (-9.72°; -1.27°), P=0.01, d 0.42

	treatment for LBP at time of study (LBP duration: NR)			R	Y
French et al 2015 ⁶	N=16 (6 male,10 female), mean age 62.44 (SD 7.19) years; patients with radiographically confirmed hip OA; LBP duration 89.31(SD 110.51) months, VAS 5.48 (SD 3.61); RMDQ (0-24): 10.26 (SD 5.56)	N=8 (5 male, 3 female), mean age 70.13 (SD 9.54) years; patients with radiographically confirmed hip OA; No Back pain	AROM Flx, Abd(supine), IR, ER (sitting)	Goniometer	no significant differences for ALL ROM on unaffected side
Handrakis et al 2012 ⁷	N=30 (males, females NR), Pain (LBP); VAS≧2/10; LBP duration: NR)	N=54 (males, females NR), min/no LBP	AROM Ext (hip flexor length (TT))	Goniometer	no statistical difference between groups for hip flexors length (Ext ROM)
		V .			

Kishi et al 2009 ⁸	N=26 males, age NR; university Kendo practitioners; LBP history (N=16 with LBP at time of survey); kendo training period 11.9 (SD 1.6) years; LBP duration: since high school (N=10), senior high school days (N=23), university	N=11males, age NR; university Kendo practitioners; No LBP; kendo training period 12.1(1.9) years	PROM Flex, Ext, IR, ER, (position NR)	Goniometer	no diff b/w groups for ALL ROM
Lephart et al 2010 ⁹	days (N=4) N=16 males, mean age 48.6 (SD 7.4) years, amateur golfers with LBP <2years BUT not at time of testing	N=16 males, mean age 47.9 (SD 8.3) years, no LBP history. Matched by age & handicap (level)	Flex, Ext, IR, ER, Abd, Add (method- NR)	Goniometer	no diff b/w groups for ALL ROM

Mellin 1990 ¹⁰	N=55 (26 male,29 female), mean age 21.4 (SD 1.9) years, 21.4 (SD 0.9) years respectively); Medical, nursing, physiotherapy, students volunteers with LBP. Duration: 1-3days (N=15), 4-10days (N=25), 11-30days (N=11), >30days (N=4)	N=48 (29 male, 19 female), mean age 21.5 (SD 2.2), 21.5 (SD 1.1) years respectively); Medical, nursing, physiotherapy, students volunteers, no LBP	AROM sum of bilateral hip Flex (supine) Ext, IR, ER (prone)	Inclinometer	LESS Ext, ER LBP group (females only): Ext: -8° (-13.8°; -2.20°), p=0.00, d 0.784 ER: -9° (-17.32°; -0.68°), p=0.03, d 0.64 LESS Flx LBP group (males only): -8° (-15.85°; -0.15°), p=0.04, d 0.548
Murray et al 2009 ¹¹	N=28 (26 male, 2 female), (mean age 56.4 (SD 8.4) years; amateur golfers with LBP within past 12 months/ currently suffering LBP	N=36 (32 male, 4 female), mean age 54.3 (SD 14.4) years; amateur golfers, no LBP	PROM+AROM IR, ER (prone)	Inclinometer	LESS IR LBP lead hip Passive IR: -10° (-14.62°, -5.20°), p (NR); Active IR: -7° (-11.14°; -2.03°), p (NR)
Nagai et al 2015 ¹²	N=30 (males, females-NR), mean age 31.6 (SD 5.9) years, active-duty helicopter pilots with LBP within the	N=30 (male, female NR) mean age 31.6 (SD 6.0) years, no-LBP history. Matched by age (+/- 5years), gender,	PROM IR, ER, (prone)	Digital inclinometer	No difference b/w groups for ALL ROM but INCREASED Asymmetry in Total rotation LBP group side-to-side symmetry: LBP 0.95° (0.03) vs No-LBP 0.97° (0.04), p=0.03

	past 12months, but no LBP at time of study. ODI 18.3 (SD 16.6), pain duration 2.4 (SD 4.1) days, NPRS 5.3 (SD 2.2)	total flight hours (+/-500hrs)		R	
Nourbakhsh et al 2002 ¹³	N=300 (150 male,150 female, mean age 43.1 (SD 14), 43.3 (SD 13) years respectively. CLBP, 68% (N=204) had LBP>6 months and reporting pain and stiffness in low back at time of study. Patients selected from 5 hospitals and from patients in the orthopedic and PT department; LBP duration >6weeks, or >3 intermittent episodes of each>1week for the previous year.	N=300 (150 male, 150 female), mean age 43 (SD 15), 43 (SD 13) years respectively; Asymptomatic, accompanies for patients or referred to the hospital for non- musculoskeletal problems. Matched by age and gender.	PROM Abd (Hip Adductors length; average Rt+Lt) (supine)	Goniometer	NO significant difference b/w groups for Abd ROM (Adductors length)

Nourbakhsh et al 2006, ¹⁴ 2002 ¹³	see Nourbakhsh et al 2002	see Nourbakhsh et al 2002	AROM Ext (hip flexor length (TT); average sum of bilateral hips)	Goniometer	NO significant difference b/w groups for Ext ROM (hip flex extensibility)
Paatelma et al 2009 ¹⁵	1.CLBP; N=55 (24 male, 31 female), mean age 42.3 (SD 11.6) years; LBP>3months; selected from primary-care patients (screened to exclude need for surgery) 2. Subacute LBP (SLBP); N=47 (29 male, 18 female), mean age 44.6 (SD 10.6) years; subjects employed, with current (new/ recurrent) LBP, last episode lasted <3months; selected from occupational health centres	control; N=55 (22 male, 33 female), mean age 37.5(8.1) years; No LBP diagnosis/ any treatment for LBP in the past 1 year. Recruited from university surrounding	1. bilateral hip mobility 2. bilateral IP tightness (method-NR)	Not reported	forward stepwise logistic model: subjects with IP tightness were found to have 2.77 times more chance to have CLBP, and 7.09 to have SLBP compared to those with normal IP length

Roach et al 2015 ¹⁶	N=30 (14 male, 16 female), mean age 45 (SD 12) years; active volunteers from medical & recreational facilities with CLBP>3months; participating in recreational sport/ regular exercise routine (≥3 days/ week)	N=30 (13 male, 17 female); mean age 34 (SD 13.1) years; volunteers from medical & recreational facilities, no LBP	AROM Ext (MTT); IR, ER (prone)	Digital inclinometer	LESS Ext LBP group -10.94° (-15.09°; -6.78°), P=0.00, d 1.41
Roncarati & McMullen 1988 ¹⁷	N= NR, age NR; recruited from physiotherapy, sports medicine, clinics, high- schools & universities' surrounding, with LBP (self-induced (trauma)/ intrinsic (mechanical); LBP frequency: X10.7 times than non- LBP group	N= NR, age NR; non-LBP	hip muscles flexibility (extensors, ERs, IRs length) (method- NR)	Goniometer	significantly correlated w LBP: limited length of hip extensors (r=0.095, p=0.008), external rotators (r=0.099, p=0.006), Internal rotators (r=0.088, p=0.012)

Scholtes et al 2009 ¹⁸	N=50 (32 male, 18 female), mean age 28.2 (SD 8.1) years; CLBP duration 6.5 (SD 5.4) years; participating regularly(\geq 2/week) in rotation-related sport; modified ODI% 14.6 (SD 7.6); current VAS 2.9 (SD 1.7); number of acute flare ups in the past 12months: 7.1 (SD 3.8)	N=41 (22 male, 19 females), mean age 27.9 (SD 7.4) years; No LBP and not participating regularly in rotation-related sport	AROM ER (average Rt+Lt) (prone)	Motion capture system (eVaRT)	no significant difference for ER between groups
Stuelcken et al 2008 ¹⁹	1. N=14 females; LBP 2. N=14 females, LBP mean age (for ALL females) 22.5 (SD 4.5) years; cricket elite fast bowlers with LBP history attributed/ aggravated by performing cricket related skills (N=9 at least one	1. N=8 males, mean age 21.5 (SD 3.0) years, No LBP at time of study 2. N=12 females cricket elite fast bowlers, no LBP, mean age as reported for ALL females in the study	AROM Ext (hip flexor length; MTT)	Goniometer (spirit level for horizontal reference)	INCREASED Ext LBP fast bowler <u>Females vs no-LBP Males</u> BAS Ext: +12° (4.60°; 19.39°), p=0.00, d 1.49 Non-BAS Ext: +8.90° (0.79°;17.00°), P=0.03, d 1.04 (No differences between females with or without LBP)

	episode in the past 12 months; N=3 LBP at the start of study)			~	Y
Tanaka et al 2015 ²⁰	N=18 (males, females NR),mean age 62.6 (SD 11.0) years; patients with radiographically confirmed hip OA with LBP at time of study; duration: NR	N=17 (males, females NR), mean age 64.1 (SD 8.4) years; patients with radiographically confirmed hip OA no LBP	Flx, Abd(supine), Ext (prone/sly if did not reach 0 degrees)	Goniometer	No significant difference for ALL ROM on unaffected side
Vad et al 2003 ²¹	Symptomatic LBP, N=40 males, age (NR), professional tennis players with LBP duration >2 weeks, limiting Tennis performance, screened also for shoulder pain.	N=60 males, age (NR); professional tennis players, Asymptomatic,	PROM IR (supine 90º hip flx)	Goniometer	LESS IR (90° hip flx) LBP group: Lead hip: -5.90° (-6.39°; -5.40°), p=0.00, <i>d</i> 4.89 Non-lead hip: -1.50° (-2.19°, -0.80°), p=0.00, <i>d</i> 0.88

Vad et al 2004 ²²	N=14 males, mean age 30.7 (21-38) years; professional golfers Symptomatic; LBP history >2weeks for the past year, limiting golf performance (no LBP at time of study)	N=28 males, mean age 31.6 (23-40) years; professional golfers, non-symptomatic; no LBP history	IR (method-NR)	Goniometer	LESS lead hip IR LBP group: -5.10° (-5.93°; -4.26°), p=0.00, d 4.07
Van Dillen et al 2000 ²³	N=10 (4 male, 6 female), mean age 33.7 (SD 9.31) years; LBP (patients referred to physiotherapy); LBP duration >7weeks	N=35 (10 male, 25 female), mean age 31.3 (SD 11.36) years; Back Healthy	AROM Ext in 4 TT positions (average Rt+Lt) : HET1:Abd 0°, K/F 80° HET2:Abd 0°, full K/E HET3:max Abd, K/F 80° HET4:max Abd, full K/E	Goniometer	Ext in HET2 LBP group: -4.16° (-8.00°; -0.31°), p=0.03, d 0.79 Ext in HET3 LBP group: -4.84° (-7.94°; -1.73°), p=0.00, d 1.01

Van Dillen	N-24 (17 male 7	N=24 (18 male 6	PROM	Inclinometer	No significant difference between
et al 2008 ²⁴	female) mean age	female) mean		monnoter	groups for unilateral FR IR
	26 17 (SD 7 27)	200 26 96 (SD	(prope)		
	vears Students	771 vears	(prone)		
	participating	Students			
	rogularly in rotation	participating		R	
	regularly in rotation	rogularly in			
	chronic I BD (> holf	regularly in			
	dove in post	notation related			
	12months	(no history of LBP			
	izmonuis,	that limited ADI			
	repisoues) OR	deve/ did not each			
	holf the days in	modical			
	nall the days in	interical			
	past izmonins,	metobod for ogo			
	multiple episodes),	matched for age,			
	of L BD to bo	gender, Divir,	Y		
	associated with	score			
	participation in				
	L BD duration 7.02				
	LDP uuration 7.02				
	(SD 5.75) years,				
	12 months: 0.20				
	(SD 2 66). NDS				
	(302.00), NR3				
	1wook: 2 77 (SD				
	1 90): ODI 0/: 15 0	Y			
	(SU V.3)				

NOTE: Hip range of motion (ROM) measured bilaterally unless otherwise specified

Abbreviations: Abd (Abduction); Add (Adduction); ADL (activities of daily living); AROM (active ROM); BAS (bowling arm side); C.I (confidence intervals); CLBP (chronic low back pain); ER (external rotation); Ext (extension); Flx (flexion); HET (hip extension test); IP (iliopsoas); IR (internal rotation); K/F (knee flexion); LBP (low back pain); Lt (left); MD (mean difference); MTT (modified TT); N (represents sample size); NPRS (numeric pain rating scale); NR (not reported); OA (osteoarthritis); ODI (Oswestry Disability Index); PROM (passive ROM); PT (physical therapy); RMDQ (Roland Morris Disability Questionnaire); Rt (right); SLBP (subacute LBP); TT (Thomas test); VAS (visual analogue scale).

References Extraction table

1. Adegoke BOA, Fapojuwo OA. Range of active hip motion in low back pain patients and apparently healthy controls. *Internet Journal of*

Allied Health Sciences & Practice. 2010;8(3):8p.

- 2. Ashmen KJ, Buz Swanik C, Lephart SM. Strength and flexibility characteristics of athletes with chronic low-back pain. *Journal of Sport Rehabilitation.* 1996;5(4):275-286.
- 3. Bach DK, Green DS, Jensen GM, Savinar E. A comparison of muscular tightness in runners and nonrunners and the relation of muscular tightness to low back pain in runners. *Journal of Orthopaedic and Sports Physical Therapy.* 1985;6(6):315-323.
- 4. Chesworth BM, Padfield BJ, Helewa A, Stitt LW. A comparison of hip mobility in patients with low back pain and matched healthy subjects. *Physiotherapy Canada*. 1994;46(4):267-274.

- 5. Ellison JB, Rose SJ, Sahrmann SA. Patterns of hip rotation range of motion: a comparison between healthy subjects and patients with low back pain. *Phys Ther.* 1990;70(9):537-541.
- French H, O'Donnell B, Cuddy V, O'Connell P. Clinical features of low back pain in people with hip osteoarthritis: A cross sectional study.
 Physiotherapy Practice and Research. 2015;36(1):15-22.
- 7. Handrakis JP, Friel K, Hoeffner F, et al. Key characteristics of low back pain and disability in college-aged adults: a pilot study. *Arch Phys Med Rehabil.* 2012;93(7):1217-1224.
- 8. Kishi S, Morikita I. Range of motion of hip joints of male university kendo practitioners with lower back pain. *Journal of Physical Therapy Science.* 2009;21(3):253-256.
- 9. Lephart SM, Tsai YS, Sell TC, Smoliga JM, Myers JB, Learman KE. A Comparison of physical characteristics and swing mechanics between golfers with and without a history of low back pain. *Journal of Orthopaedic and Sports Physical Therapy.* 2010;40(7):430-438.
- 10. Mellin G. Decreased joint and spinal mobility associated with low back pain in young adults. *J Spinal Disord.* 1990;3(3):238-243.
- 11. Murray E, Birley E, Twycross-Lewis R, Morrissey D. The relationship between hip rotation range of movement and low back pain prevalence in amateur golfers: an observational study. *Phys Ther Sport.* 2009;10(4):131-135.
- 12. Nagai T, Abt JP, Sell TC, et al. Lumbar spine and hip flexibility and trunk strength in helicopter pilots with and without low back pain history. *Work: Journal of Prevention, Assessment & Rehabilitation.* 2015;52(3):715-722.

- 13. Nourbakhsh MR, Arab AM. Relationship between mechanical factors and incidence of low back pain. *J Orthop Sports Phys Ther.* 2002;32(9):447-460.
- 14. Nourbakhsh MR, Arabloo AM, Salavati M. The relationship between pelvic cross syndrome and chronic low back pain. *Journal of Back and Musculoskeletal Rehabilitation*. 2006;19(4):119-128.
- 15. Paatelma M, Karvonen E, Heiskanen J. Clinical perspective: How do clinical test results differentiate chronic and subacute low back pain patients from "non-patients". *Journal of Manual and Manipulative Therapy*. 2009;17(1):11-19.
- 16. Roach Sean M. SJJG, Suprak Dave N., Lyda Marc., Bies Alexander J., Boydston Cooper R. Passive hip range of motion is reduced in active subjects with chronic low back pain compared to controls *The International Journal of Sports Physical Therapy*. 2015;10.
- 17. Roncarati A, McMullen W. Correlates of low back pain in a general population sample: a multidisciplinary perspective. *J Manipulative Physiol Ther.* 1988;11(3):158-164.
- 18. Scholtes SA, Gombatto SP, Van Dillen LR. Differences in lumbopelvic motion between people with and people without low back pain during two lower limb movement tests. *Clin Biomech.* 2009;24(1):7-12.
- 19. Stuelcken MC, Ginn KA, Sinclair PJ. Musculoskeletal profile of the lumbar spine and hip regions in cricket fast bowlers. *Phys Ther Sport*. 2008;9(2):82-88.

- 20. Tanaka S, Matsumoto S, Fujii K, Tamari K, Mitani S, Tsubahara A. Factors related to low back pain in patients with hip osteoarthritis. *J* Back Musculoskeletal Rehabil. 2015;28(2):409-414.
- 21. Vad VB, Gebeh A, Dines D, Altchek D, Norris B. Hip and shoulder internal rotation range of motion deficits in professional tennis players. *J Sci Med Sport*. 2003;6(1):71-75.
- 22. Vad VB, Bhat AL, Basrai D, Gebeh A, Aspergren DD, Andrews JR. Low back pain in professional golfers: the role of associated hip and low back range-of-motion deficits. *Am J Sports Med.* 2004;32(2):494-497.
- 23. Van Dillen LR, McDonnell MK, Fleming DA, Sahrmann SA. Effect of knee and hip position on hip extension range of motion in individuals with and without low back pain. *J Orthop Sports Phys Ther.* 2000;30(6):307-316.
- 24. Van Dillen LR, Bloom NJ, Gombatto SP, Susco TM. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. *Phys Ther Sport.* 2008;9(2):72-81.

16

В

С

ACCEPTED MANUSCRIPT

Highlights

- There is very low-quality evidence to support an association between limitation of hip ROM and NSLBP.
- Hip joint ROM assessment should be considered with caution in patients
 presenting with NSLBP.
- Internal rotation ROM is the main direction that could be considered for assessment in NSLBP patients.
- Hip extension assessment should differentiate between joint ROM and hip flexor muscle length testing.